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Signal processing is used extensively in physical and engineering acoustics, with applications in 
nondestructive evaluation, machine and structural monitoring, tracking and localization, and 
elsewhere.
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Introduction
Signal processing is used extensively in physical and engineering acoustics, with 

applications in nondestructive evaluation, machine and structural monitoring, tracking and 
localization, and elsewhere. The goal of signal processing is to extract information from noisy 
and uncertain measurements. In this process we exploit both statistical analysis and properties of 
acoustic wave generation and propagation to separate extraneous components of the 
measurements from the signal of interest. Due to the breadth of applications and methods, we 
have decided not to attempt a survey of signal processing physical and engineering acoustics. 
Rather we present three examples of signal processing that illustrate different methods and 
approaches to the problem of extracting information from measurements. The first example uses 
the symmetry of reciprocal wave propagation and timing of reflections detect flaws (cracks) in 
plates. This is an illustration of a signal processing exploiting a principle associated with 
physical acoustics. The second example uses a sophisticated statistical approach to determine the 
condition of gears in a gearbox from accelerometer measurements. Machine condition 
monitoring is a large area of engineering acoustics motivated by both cost and safety. The final 
example shows how combining information from different sound sources improves the ability to 
locate the origin of a bullet fired from a firearm. 

Time Reversal1
Time reversal (TR) is a method of locating and characterizing sources and to 

intentionally focus energy at a selected location in space.2-3 The original time reversal 



experiments were conducted by Parvulescu and Clay in the early 1960s to demonstrate the 
reproducibility of signal transmissions in the ocean.4 It has found application in SONAR,5
communications,6-7 medical ultrasound,8-9 nondestructive evaluation,10-11 and seismic imaging12-

13 (see selected references for recent work in these areas). The application of TR to 
nondestructive evaluation allows localization of cracks,10 which are nonlinear scatterers, and 
linear passive scatterers.11 It will likely soon be shown that TR can be used to locate acoustic 
emission events, as work is currently underway to show this.

To illustrate the application of TR to nondestructive evaluation, we will describe a basic 
TR experiment. During the forward propagation step, a source signal is broadcast from location 
A in a bounded sample. A reversible transducer at location B collects the directly propagated 
signal from A and reflections of the source signal from the various possible reflected paths 
between A and B. The signal recorded at B is then reversed in time and during the backward 
propagation step is broadcast from the reversible transducer at B. This second broadcast signal 
traverses the propagation paths traversed during the forward propagation step. The energy 
broadcast along each respective path is timed such that they will simultaneously arrive at A. 

Reverse time migration (RTM) is a variant of TR commonly used in seismology 
applications to image scatterers of interest in the ground. Anderson et al. recently demonstrated 
that RTM may be fully implemented experimentally in 2-D laboratory samples to image 
scatterers on an inaccessible side of a plate and places where these scatterers may be partially 
delaminated.11 To image scatterers using RTM, the aforementioned TR experiment is carried out 
as normal, however during both the forward and backward propagation steps the vibration of the 
wave field at various points within a region of interest (ROI) must be sensed, with a scanning 
laser vibrometer for example. RTM imaging correlates the arrivals of energy at specific times at 
a particular scatterer during the forward propagation with corresponding arrivals of energy at 
analogous times at the same scatterer during the broadcast and convergence of energy of the 
backward propagation (after these last set of data have been reversed in time). To the degree that 
the energy broadcast during the backward propagation step retraces the forward propagation 
paths, RTM allows imaging of passive scatterers.

Figure 1a illustrates the forward propagation of a RTM experiment conducted in free 
space with a source at A, a reversible transducer at B and a scatterer at C. The forward signal is 
emitted from A after 7 time units. This forward signal is then directly received at B at a time of 
11 units and the reflection off of C arrives at B at a time of 12 units. The forward signal arrives at 
C at a time of 10 units. The signal recorded at B is now flipped in time and used as the source 
signal for the backward propagation depicted in Fig. 1b (we color the two emission signals from 
B to aid visualization of this step). The red signal from B directly travels to A and arrives at a 
time of 6 units. The red signal from B also reflects off of C and arrives at A at a time of 7 units. 
The blue signal from B also directly travels to A and arrives at a time of 7 units (constructively 
interfering with the reflected red arrival producing the purple recorded signal). The blue signal 
from B also reflects off of C and arrives at A at a time of 8 units. The signal at A is typical of a 
symmetric time reversal focus signal.13 The signal recorded at C consists of the red signal 
delayed by 2 time units and the blue signal delayed by 2 units. Now, if the signal recorded at C is 
reversed in time and compared to the signal recorded at C during the forward propagation step, 
one will notice that the green arrival and the red arrival are synced in time. The traditional RTM 
image, I, is found through computing the cross correlation of the forward signal, F, at position 
(x,y) with the backward signal, B, at (x,y), after this later signal has been reversed in time,

      tBtFI yxyxyx  
,,

1
, , (1)



where  represents a Fourier transform, * represents phase conjugation, and –t represents a 
time reversal. The magnitude of the image yxI , is then typically displayed to locate scatterers. 
Anderson et al. found that this traditional imaging condition doesn’t work well in a highly 
reverberant medium and instead used the following imaging condition with better results

     ,,
1

, tBtFM yxyxyx   . (2)
The experiments conducted by Anderson et al. found that scatterers of a high impedance 

relative to the sample impedance showed up as minima in the yxM , image. In another 
experiment at Los Alamos National Laboratory, the question of whether yxM , could distinguish 
between low and high density scatterers was investigated15. This experiment utilizes a nearly 
semicircular aluminum plate of dimensions 6.54x179x396 mm (pictured in Fig. 2a). The 
characters “LANL” are milled out of the plate at a depth of 3.23 mm and a width of 10 mm. The 
characters “EES-11” are cut out of a 2.64 mm thick steel plate with a width of 10 mm and glued 
onto the plate. The removal of plate material for the “LANL” characters should present an 
incident wave with a low impedance scatterer, while the addition of material for the “EES-11” 
characters should present a high impedance scatterer. In this experiment a single transducer 
(labeled as S in Fig. 2a and is slightly not in view for the photograph) is used as the source with a 
single receiver transducer (labeled as R in Fig. 2a). A scanning laser vibrometer scans the 
forward and backward propagation wave fields on the other side of the plate. The ROI in this 
experiment includes all of the characters with approximately a 1 mm spacing between scan 
points. The image yxM , of the characters is displayed in Fig. 2b. The characters “LANL” are 
clearly visible as maxima of yxM , . The characters “EES-11” are not quite as visible. It is 
expected that these would show up as minima just as the high impedance scatterers used in the 
work of Anderson et al. The reason for the poorly visible “EES-11” characters may be due to the 
thickness of the plate relative to the wavelength, resulting in a smaller impedance contrast from 
the “EES-11” letters to the aluminum plate than the impedance contrast in the Anderson et al. 
experiments.

Thus, RTM imaging for nondestructive evaluation of bounded plate samples may be used 
to image passive scatterers and locations of disbonding of those scatterers. This procedure may 
be carried out to image scatterers on the opposite side of a thin plate if that side is inaccessible. It 
may also prove to distinguish between high and low impedance scatterers. The work of 
Anderson et al. showed that high impedance scatterers showed up as minima in a RTM image 
and the work presented here shows that low impedance scatterers show up as maxima, but 
further work needs to be done to determine why the high impedance scatterers considered here 
did not show up as minima.



Figure 1. Illustration of the reverse time migration process in a free space with a scatterer at 
location C. The propagation times for each path are included for the reader’s reference. (a) 
Forward propagation step. (b) Backward propagation step.



Figure 2. (a) Photograph of a semicircular aluminum plate which has the letters “LANL” milled 
out of it and steel letters “EES-11” glued onto it15. S and R denote the source and receiver 
transducers named according to the forward propagation usage. (b) RTM image of the other side 
of this plate (mirror image is displayed). Amplitude is in dB units with an arbitrary reference.



Independent Component Analysis Applied to Non-Invasive Gear Health Monitoring16

The non-invasive monitoring of the health of gearboxes has been a very active area of 
research over the past two decades.  The capability to predict gear failures from accelerometer -
based measurements of the gear meshing vibration signal is of great import ance in industries 
such as the aerospace industry (e.g. helicopter gearboxes).  If one can predict failure, then gears 
can be swapped during regular scheduled maintenance.  This prevents accidents and saves 
money due to unscheduled down time.  The main concept in gear health monitoring is that the 
meshing of the gear and pinion (Figure 3) gives rise to a vibration signal that propagates to the 
gearbox case where it is measured by accelerometers.  The challenge is that, in real systems, 
many vibration signals arise due to vehicle motion, shaft imbalances, mode shape vibrations of 
the gearbox case, etc.  All of these are also present at the measurement points necessitating the 
development of signal processing approaches that can isolate and analyze the gear me sh signal.   
Past condition monitoring techniques of gearboxes have used many different signal processing 
approaches such as synchronous time series averaging17, amplitude and phase demodulation18, 
time–frequency distribution19 and wavelet analysis20. The use of statistical signal processing 
approaches have also taken a hold in gear tooth failure detection21. Non-linear adaptive 
algorithms for independent component analysis (ICA) have been shown to separate unknown, 
statistically independent sources that have been mixed in dynamic systems. This example 
illustrates the application of an information maximization based blind source separation 
algorithm (a type of independent component analysis (ICA)) to the prediction of gear failures. It 
is shown that ICA can be used to detect impulsive and random changes in the gear vibration data.

Figure 3.  Simple spur gear and pinion setup

In typical gearbox setups, the pinion drives the gear through rotational motion where 
force is exerted on the gear teeth where the pinion teeth come into contact with the gear teeth.   A 
common failure of the gear teeth occurs when a crack occurs at the base of the tooth due to 
material fatigue (Figure 4).



Figure 4.  Crack formation and growth at the base of a gear tooth

The crack formation at the base of the tooth begins to cause the tooth to flex when the pinion 
exerts force on the tooth.  Because the tooth flexes, there is a slight delay in the rotation of the 
gear causing a modulation of the meshing vibration signal.  It is this modulation that fault 
monitoring algorithms attempt to detect before the tooth actually fails.

Having measured the signals at several locations on the gearbox surface, the next task is 
to separate the gear-pinion meshing signal and determine whether a change (or modulation) 
occurs during the gear-pinion contact period.  One candidate algorithm for performing these 
tasks is the blind source separation algorithm (BSS).

Figure 5 shows a high level diagram of the BSS algorithm.  The approach assumes that 
there are r independent source signals that are linearly mixed by a mixing matrix A.  This linear 
mixing is the mathematical model for signals from multiple sources arriving at each 
accelerometer.  The signals X(t) are then measured at the accelerometer points and fed into the 
BSS part of the algorithm.  BSS attempts to minimize the mutual information between 
accelerometer channels (i.e. measurements made at several points on the gearbox surface).  This 
forces the independent sources �� into separate channels.  The weight matrix W, once learned, is 
ideally A-1.  By observing changes in the trace of the weight matrix W, one can observe points 
where the algorithm diverges (i.e. where there are abrupt statistical changes in the signals). By 
plotting the trace of W as a function of the gear tooth locations, the modulation of the meshing 
signal can be detected.  Figure 6 gives a plot of the trace of W vs. gear tooth number for a 
healthy gear and for the same gear at a later time as it begins to fail. The point of the future 
failure is very visible in the lower plot. This approach provides the possibility to non-invasively 
monitor the health of gears or other types of rotating machinery such as bearings using 
measurements made at the gearbox (or machine) surface and can in theory separate out all of the 
unwanted signals that are present in the mixture of signals at the measurement points.  This 
allows an analysis of the “clean” signatures alone.  This is the reason that ICA/BSS algorithms 
have seen wide application from voice processing to the isolation of sounds in the human chest 
cavity.



Figure 5.  High Level BSS Algorithm

Figure 6.  Result of BSS Processing for a healthy gear (top) and for a gear that is beginning to 
break (bottom)



Acoustical Signal Processing Methods for Localizing Gunshots 22

To an unalerted listener, the sound of gunfire represents an aural event in the soundscape 
that evokes a reaction of surprise tempered by curiosity. However, in engineering acoustics it 
represents a transient acoustic signal generated by the discharge of a firea rm from which 
information can be extracted such as the location of the point of fire ( localization) and the type 
of firearm (classification). The sound pulse generated by the discharge of a bullet from a firearm 
is referred to as the muzzle blast or in military parlance – the report. The acoustic energy 
propagates at the speed of sound travel in air and expands as a spherical wavefront (of constant 
phase) centered on the point of fire. Since the propagation of the sound through the atmosphere 
is omnidirectional, it can be heard from any direction, even behind the firer. If the listener is 
positioned forward (towards the front) of the firer and the bullet travels at supersonic speed, 
then a second transient signal, which is referred to as the (ballistic) shock wave is heard. To the 
listener, the origin of the shock wave occurs at a point nP (referred to as the detach point), which 
is located at a distance nx along the trajectory of the bullet – see Fig. 7. When the listener is near 
the trajectory, the sound pulse (or sonic boom) is extremely loud. Similar to the muzzle blast 
wave, the shock wavefront travels away from its point of emission at the speed of sound. But, 
unlike the muzzle blast wavefront, it expands as a conical surface with the trajectory and nose of 
the bullet defining the axis and apex of the cone respectively.  The angle n (see Fig. 7) at the 
apex of the cone is referred to as the Mach angle, whose sine is equal to the reciprocal of the 
Mach number, which is defined as the ratio of the bullet’s speed V to the speed of sound c23 A 
casual listener will hear the shock wave before the muzzle blast and instinctively look in the 
direction of its origin (the detach point) and confuse it with the actual direction of the firer, 
which  coincides with the direction of the muzzle blast that arrives later – see Fig 7.

Figure 7. Acoustic transient signals – the muzzle blast is generated at the point of fire and the
ballistic shock wave originates from the detach point along the bullet’s trajectory.



Figure 8. Source-sensor geometry for passive ranging by wavefront curvature.

   By sensing these signals at spatially-separated sensors and applying various acoustical 
signal processing methods for sound source localization, it is possible to estimate the position of 
the firing point. One method, which relies only on the muzzle blast, is referred to as passive 
ranging by wavefront curvature24. The simplest sensor configuration for this method consists of 
three equally-spaced microphones positioned along a straight line – see Fig. 8. The basic 
principle is to estimate the wavefront’s radius of curvature, which corresponds to the range of the 
firing point. Knowing the speed of sound travel in the atmosphere (c) and the intersensor 
separation distance (d), and measuring the differences in the arrival times ( 12 and 23 )  of the 
muzzle blast wavefront at adjacent sensor pairs, enables the calculation of the source range R 
(from the middle sensor) and source bearing  (with respect to the array axis)24. The results of 
applying this method to the passive ranging of real gunshot data from five different firing 
positions are shown in Fig. 9; typically 260 rounds were fired from each position.  The variance 
of the source range estimates increases with range, while the bearing estimates for the serial 
conducted at the longest range (475 m) have a bias error which could be attributed to 
atmospheric refraction of the sound or uncertainty in the ground truth data of the firing position. 
The variances of both the range and bearing estimates can be reduced by increasing the effective
sensor separation distance ( )sin d 24.



Figure 9. Variation with range of (a) relative range error and (b) bearing error for localizing the 
point of fire at five ranges using passive ranging by wavefront curvature of the muzzle blast
wave only.



Figure 10. Similar to Figure 9 but for the ballistic model-based method which uses both the 
muzzle blast and shock wave information.

   A second method, which uses both muzzle blast and shock wave information, is 
referred to as the ballistic model-based method for passive ranging of direct fire weapons25. 
Measuring the differences in the arrival times ( csxtcr nnn /)(/  ) and arrival angles n of 
the muzzle blast and shock waves at a sensor node n (a small baseline sensor array) enables the 
range r to be estimated – see Fig. 7. For a bullet travelling with a constant velocity (V), 

)cos1/( nncr   25. In practice, range estimates based on the constant bullet velocity 
assumption can have significant errors (especially at long source ranges), necessitating the 
development of a ballistic model-based approach that accounts for the deceleration of the bullet 
along its trajectory. The shock wavefront is better represented (visualized) as a half prolate 
spheroid (pointed oval shape like an American football) for a decelerating bullet, ra ther than as a 
conical surface for a bullet travelling with a constant velocity. The ballistic parameters, which 



must be known a priori or estimated in situ, are the bullet’s initial velocity and the ballistic 
constant (which depends on the bullet’s mass, cross-sectional area and aerodynamic drag). The 
results of applying this method to the passive ranging of real gunshot data from the five different 
firing positions are shown in Fig. 10. When compared with the passive ranging by wavefront 
curvature method (Fig. 9), the variances of the ranges of the firing positions are reduced when 
estimated using the ballistic model-based method, most notably at the longer source ranges. The 
converse is true for the bearings of the source positions because of the shorter baseline of the 
sensor array used with the ballistic model-based method. Additionally, when the source ranges 
are estimated using the conventional method which assumes a constant bullet velocity, they are 
found to have significant bias errors especially at the longer firing ranges. Also, the radial error, 
which is defined as the separation distance between the estimated and actual firing positions, is 
found to be dependent on the caliber of the bullet – the conventional method’s radial errors are 
much larger for 5.56 mm rounds than for 7.62 mm caliber ammunition. 

  Currently under development is a third localization method26 that relies only on the 
ballistic shock wave information, which is advantageous when the received muzzle blast is 
absent due to the use of a sound suppressor (silencer) or weak due to the high transmission loss 
(spreading loss plus absorption loss) suffered by the acoustic signal when its propagation path 
from source to sensor is long. Another advantage of this method occurs when there is 
simultaneous fire from different firing positions as each shock wave signal is not required to be 
associated with a corresponding muzzle blast signal as is the case with the ballistic model-based 
method. A new method proposed by the authors is simultaneous localization and classification, 
which uses both the muzzle blast and shock wave information received by a next-generation 
network of spatially-distributed unattended ground sensors comprising “low-cost sensor nodes 
operating on shoestring power budgets for years at a time in potentially hostile environments 
without hope of human intervention”.

Summary
In this article we have presented three examples of signal processing approaches in 

physical and engineering acoustics. In time reversal, we exploit a principle in physical acoustics 
to enhance the detection of flaws in plates and structures. In gearbox monitoring we show how 
sophisticated statistical techniques such as principle component analysis and blind source 
separation can be employed to solve a difficult and important problem in structural and machine 
monitoring. Finally, in point of fire localization we see how both wavefront curvature and shock 
front propagation can be combined to improve estimates of the origin of a bullet fired from a 
gun. We hope this gives a flavor of the variety of approaches and applications of signal 
processing to physical and engineering acoustics.
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Figure Captions

Figure 1. Illustration of the reverse time migration process in a free space with a scatterer at 
location C. The propagation times for each path are included for the reader’s reference. (a) 
Forward propagation step. (b) Backward propagation step.

Figure 2. (a) Photograph of a semicircular aluminum plate which has the letters “LANL” milled 
out of it and steel letters “EES-11” glued onto it. S and R denote the source and receiver 
transducers named according to the forward propagation usage. (b) RTM image of the other side 
of this plate (mirror image is displayed). Amplitude is in dB units with an arbitrary reference.

Figure 3.  Simple spur gear and pinion setup

Figure 4.  Crack formation and growth at the base of a gear tooth

Figure 5.  High Level Diagram of the Blind Source Separation Algorithm

Figure 6.  Result of Blind Source Separation Processing for a healthy gear (top) and for a gear 
that is beginning to break (bottom)

Figure 7. Acoustic transient signals – the muzzle blast is generated at the point of fire and the
ballistic shock wave originates from the detach point along the bullet’s trajectory.

Figure 8. Source-sensor geometry for passive ranging by wavefront curvature.

Figure 9. Variation with range of (a) relative range error and (b) bearing error for localizing the 
point of fire at five ranges using passive ranging by wavefront curvature of the muzzle blast
wave only.

Figure 10. Similar to Figure 9 but for the ballistic model-based method which uses both the 
muzzle blast and shock wave information.


